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1. INTRODUCTION

In a previous paper [1], the author proposed a simple and uni"ed technique for the
vibration analysis of a generally supported beam. The #exural displacement of the beam is
sought as the linear combination of a Fourier series and an auxiliary polynomial function.
The polynomial function is introduced to take care of all the potential discontinuities of the
original displacement and its derivatives when they are periodically extended onto the
entire x-axis. In other words, the Fourier expansion now only represents a residual or
conditioned displacement function that has at least three continuous derivatives
everywhere. As a result, not only is it always possible to expand the displacement in
a Fourier series for beams with any boundary conditions, but also the solution will be
drastically improved in terms of its accuracy and convergence. Another important
advantage of the technique is that the modal properties of a beam can be readily determined
from solving a standard matrix eigenproblem, rather than the non-linear hyperbolic
equations as in many traditional techniques.

In this study, an alternative discretization scheme based on the Galerkin method, instead
of the Fourier method, is used for solving the governing di!erential equation for beams. It
will be demonstrated through numerical examples that the current method provides an
improved solution with respect to both accuracy and convergence.

2. BASIC EQUATIONS

Figure 1 shows a beam elastically restrained at both ends. The di!erential equation for
the free vibration of the beam is

D d4w (x)/dx4!oAu2w(x)"0 (1)

or

w@@@@(x)!o
D
u2w (x)"0, (2)

where D, o and A are, respectively, the #exural rigidity, the mass density and the
cross-sectional area of the beam, u the frequency in radian and o

D
"oA/D.

The boundary conditions at the ends of the beam can be expressed as

kK
0
w"!w@@@, KK

0
w@"wA, (kK

0
"k

0
/D, kK

1
"k

1
/D), at x"0 (3, 4)
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Figure 1. A beam elastically restrained at both ends.
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and

kK
1
w"w@@@, KK

1
w@"!wA, (KK

0
"K

0
/D, KK

1
"K

1
/D), at x"¸, (5, 6)

where k
0

and k
1

are the sti!nesses of the linear springs, and K
0

and K
1

are the sti!nesses of
the rotational springs at x"0 and ¸ respectively.

Many traditional boundary conditions can be simply considered as the special cases of
equations (3}6). For example, the simply supported boundary condition can be essentially
obtained by setting the sti!nesses of the translational and rotational springs to be extremely
large and small numbers respectively.

As in reference [1], the beam displacement will be sought in the following form:

w (x)"
=
+

m/0

A
m
cos j

m
x#p (x), 0)x)¸, (j

m
"mn/¸). (7, 8)

In equation (7) the auxiliary polynomial function p(x) is introduced to remove all the
potential discontinuities from the displacement w (x) and its relevant derivatives at the end
points. As a result, the Fourier series only represents a residual or conditioned displacement
that has at least three continuous derivatives everywhere. An immediate bene"t of doing
this is that all the required di!erential operations on the Fourier series can be carried out on
a term-by-term basis.
Set

p@@@ (0)"w@@@(0)"a
0
, p@@@(¸)"w@@@(¸)"a

1
(9, 10)

p@(0)"w@(0)"b
0
, p@(¸)"w@(¸)"b

1
. (11, 12)

Then the polynomial function p (x) can be readily written as

p"f (x)TaN , (13)

where

aN "Ma
0
, a

1
, b

0
, b

1
NT (14)

and

f(x)T"G
!(15x4!60¸x3#60¸2x2!8¸4)/360¸

(15x4!30¸2x2#7¸4)/360¸
(6¸x!2¸2!3x2)/6¸

(3x2!¸2)/6¸ H . (15)

Substituting equations (7) and (9}12) into the boundary conditions (3}6), the unknown
vector, aN , can be expressed as [1]

aN "
=
+

m/0

H~1Q
m
A

m
, (16)
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where
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¸
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¸
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and

Q
m
"M!kK

0
(!1)mkK

1
!j2

m
(!1)m j2

m
NT. (18)

Combining equations (7), (13) and (16) results in

w (x)"
=
+

m/0

A
m

(cos j
m
x#f (x)TH~1Q

m
) . (19)

or

w (x)"
=
+

m/0

A
m
/
m
(x), (20)

where

/
m
(x)"cos j

m
x#f(x)TH~1 Q

m
. (21)

Equation (20) essentially de"nes a new set of trial or basis functions, [/
m
(x), m"0, 1, 2,

3,2N, that clearly satisfy all the speci"ed boundary conditions, equations (3}6).
Substituting equation (20) into equation (2) and following the standard procedures in the

Galerkin method, one is able to obtain

=
+

m{/1

(d
mm{

#S
m{m

)j4
m
A

m{
!o

D
u2A(Sm0

#Z
m0

)A
0
#

=
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m{/1

(d
mm{

#S
mm{

#S
m{m

#Z
mm{

) A
m{B"0,

(22)

m"1, 2, 3,2 , and

cH~1Q
0
A

0
#

=
+

m{/1

(cH~1Q
m{
#j4

m{
S
m{0

)A
m{
!o

D
u2A(2#Z
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)A

0
#

=
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m{/1

(S
m{0

#Z
0m{

)A
m{B"0,

(23)

where

S
mm{

"P
m
H~1Q

m{
, c"M!2/¸ 2/¸ 0 0N, (24, 25)
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m
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m
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m
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m
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Z
mm{

"QT
m
H~TNH~1Q
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and

N"2/¸ P
L

0

f (x)Tf(x)dx"C
2¸6

4725

127¸6

302400

2¸6

4725
sym.

!

4¸4

945
!

31¸4

7560

2¸2

45

!

31¸4

7560
!

4¸4

945

7¸2

180

2¸2

45
D . (28)

In addition, it is not di$cult to verify that

S
m{m

j4
m{
"S

mm{
j4
m
, Z

m{m
"Z

mm{
, (29, 30)

and

cH~1Q
m
#j4

m{
S
m{0

,0. (31)

Making use of equation (31), equation (23) reduces to

cH~1Q
0
A

0
!o

D
u2 A(2#Z

00
)A

0
#

=
+

m{/1

(S
m{0

#Z
m{0

)A
m{B"0. (32)

Finally, for the sake of clarity, equations (22) and (32) will be combined as

(K!o
D
u2M)A"0, (33)

where

A"MA
0
, A

1
, A

2
,2NT , (34)
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)j4
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0
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mm{
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0m

)(1!d
0m{

) (d
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mm{

#S
m{m
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mm{
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d
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(2#Z
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)

#d
0m{
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#Z
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)#d
m0

(S
m{0

#Z
m{0

) for m, m{"0, 1, 2, 3,2 . (36)

In comparison with the "nal equation derived in reference [1], the current PDE
discretization scheme based on the Galerkin method has led to a few additional terms in the
sti!ness and mass matrices. Although the corresponding bene"ts cannot be fully realized yet
at the moment, it should be pointed out that the sti!ness and mass matrices have become
symmetric here, which is highly desired numerically.

The modal properties of the beam can be readily determined from equation (33) by
solving a standard eigenproblem. The components in each of the eigenvectors actually
represent the expansion coe$cients, A

m
(m"0, 1, 2,2 ), from which the corresponding

mode can be readily obtained using equation (19). In numerical calculations equation (19)
(and accordingly, equation (33)) has to be truncated to include only the "rst M#1 terms
(equations).

3. RESULTS AND DISCUSSIONS

As the "rst example, assume a beam that is clamped at x"0, and simply supported at
x"¸. In addition, an elastic rotational spring of sti!ness K

1
is applied to the right end,



TABLE 1

Frequency parameters, k
i
"a/n (u

i
JoA/D)1@2, for several di+erent values of the

sti+ness KK
1
¸

k
i
"¸/n (u

i
JoA/D)1@2

Mode KK
1
¸"0 KK

1
¸"1 KK

1
¸"10 KK

1
¸"100 KK

1
¸"1010

1 1)24988 1)28656 1)4102 1)49137 1)50562
2 2)25 2)27077 2)37137 2)47681 2)49975
3 3)25 3)26479 3)3492 3)46883 3)50001
4 4)25001 4)26147 4)33354 4)46107 4)5

TABLE 2

Frequency parameters, k
i
"¸/n (u

i
JoA/D)1@2, obtained using various numbers of terms in

equation (19)

k
i
"¸/n (u

i
JoA/D)1@2

Mode M"5 M"10 M"15 M"20

1 1)50562 (1)50563)s 1)50562 1)50562 1)50562
2 2)49975 (2)49985) 2)49975 (2)49976) 2)49975 2)49975
3 3)50012 (3)50392) 3)50001 (3)50003) 3)50001 3)50001
4 4)50034 (4)5073) 4)5 (4)5002) 4)5 (4)50001) 4)5
5 * 5)5 (5)50044) 5)5 (5)50005) 5)5
6 * 6)5001 (6)50289) 6)5 (6)5001) 6)5 (6)50002)
7 * 7)50018 (7)50421) 7)5 (7)50045) 7)5 (7)50004)
8 * 8)5031 (8)52423) 8)50001 (8)5007) 8)5 (8)50014)
9 * 9)5042 (9)52852) 9)50008 (9)50251) 9)5 (9)50022)

10 * * 10)5001 (10)5033) 10)5 (10)5007)

sResults in parentheses are taken from reference [1].
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x"¸. In the current study, the clamped condition can be essentially created by setting the
sti!nesses, kK

0
¸3 and KK

0
¸, of the constraining springs to be a very large number, say, 1010.

Similarly, the simply supported boundary condition at the other end can easily be created
by setting kK

1
¸3"1010 and KK

1
¸"0.

In Table 1, the "rst four frequency parameters, k
i
"a/n (u

i
JoA/D)1@2, are listed for

several di!erent values of the sti!ness KK
1
¸. For the two extreme values. KK

1
¸"0 and 1010,

the problem essentially turns into the classical clamped}simply supported and
clamped}clamped cases. For them, the "rst four frequency parameters are, respectively, as
follows [2]: k

i
"1)24988, 2)25, 3)25, 4)25 and k

i
"1)50562, 2)49975, 3)50001, 4)5. The

excellent accuracy of the current solution is evident from the corresponding results in
Table 1.

In the above calculations, the displacement expansion, equation (19), is truncated to
M"10. In order to examine the convergence of the solution. Table 2 compares, for the
clamped}clamped case, the "rst 10 frequency parameters estimated using various numbers
of terms in equation (19). The previous results (in parentheses) from reference [1] are also
given in Table 2 for the purpose of comparison. The current solution has shown
a meaningful improvement over the previous one.



TABLE 3

Frequency parameters, k
i
"(¸2u

i
JoA/D)1@2, obtained using various numbers of terms in

equation (19)

Mode M"5 M"10 M"20 Reference [3]

1 1)188301 1)188301 1)188301 1)188301
2 3)144180 3)144180 3)144180 3)144179
3 6)227221 (6)22726)s 6)22722 (6)227224) 6)227220 (6)227221) 6)227220
4 9)336975 (9)33717) 9)336970 (9)337013) 9)336970 (9)336975) 9)336969
5 12)45011 (12)4514) 12)44988 (12)45001) 12)44988 (12)44990) 12)44988

sResults in parentheses are taken from reference [1].
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Now, let us consider a more complicated boundary condition involving both rotational
and translational restraints at each end. It is assumed that kK

0
¸3"kK

1
¸3"1 and

KK
1
¸"KK

0
¸"100. Table 3 compares the "ve lowest frequency parameters,

k
i
"(a2u

i
JoA/D)1@2, calculated by including di!erent numbers of terms in equation (19).

It is seen that the results are identical for M"10 and 20, indicating that the current
solution has already converged for M"10 with respect to these "ve frequency parameters.
It should be noticed that the "rst four frequencies currently obtained with 6-terms are as
accurate as the previous ones obtained with 21-terms. As a matter of fact, the "fth frequency
will become 12)44990 if only one more term is added to the expansion (i.e., M"6).

4. CONCLUSIONS

A uni"ed technique based on the Galerkin method for PDE discretization is derived for
determining the modal properties of beams arbitrarily restrained at the ends. Although the
current sti!ness and mass matrices appear more complicated than the original ones given in
reference [1] they become numerically attractive because of their symmetric nature. As
demonstrated by examples, the current solution is more accurate than the previous one
based on the Fourier method. In addition, it converges at a truly remarkable speed, which is
of critical importance to its future extension to the related two-dimensional problems.
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